3.213 \(\int \sqrt{d-c^2 d x^2} (a+b \sin ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=192 \[ \frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2-\frac{b c x^2 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}-\frac{1}{4} b^2 x \sqrt{d-c^2 d x^2}+\frac{b^2 \sqrt{d-c^2 d x^2} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}} \]

[Out]

-(b^2*x*Sqrt[d - c^2*d*x^2])/4 + (b^2*Sqrt[d - c^2*d*x^2]*ArcSin[c*x])/(4*c*Sqrt[1 - c^2*x^2]) - (b*c*x^2*Sqrt
[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(2*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/2 +
 (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.114679, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {4647, 4641, 4627, 321, 216} \[ \frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2-\frac{b c x^2 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}-\frac{1}{4} b^2 x \sqrt{d-c^2 d x^2}+\frac{b^2 \sqrt{d-c^2 d x^2} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

-(b^2*x*Sqrt[d - c^2*d*x^2])/4 + (b^2*Sqrt[d - c^2*d*x^2]*ArcSin[c*x])/(4*c*Sqrt[1 - c^2*x^2]) - (b*c*x^2*Sqrt
[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(2*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/2 +
 (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c*Sqrt[1 - c^2*x^2])

Rule 4647

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*(
a + b*ArcSin[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 - c^2*x^2]), Int[(a + b*ArcSin[c*x])^n/Sqrt[1 -
c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 - c^2*x^2]), Int[x*(a + b*ArcSin[c*x])^(n - 1), x],
x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d-c^2 d x^2} \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{2 \sqrt{1-c^2 x^2}}-\frac{\left (b c \sqrt{d-c^2 d x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt{1-c^2 x^2}}\\ &=-\frac{b c x^2 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{\left (b^2 c^2 \sqrt{d-c^2 d x^2}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{2 \sqrt{1-c^2 x^2}}\\ &=-\frac{1}{4} b^2 x \sqrt{d-c^2 d x^2}-\frac{b c x^2 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{\left (b^2 \sqrt{d-c^2 d x^2}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{4 \sqrt{1-c^2 x^2}}\\ &=-\frac{1}{4} b^2 x \sqrt{d-c^2 d x^2}+\frac{b^2 \sqrt{d-c^2 d x^2} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}}-\frac{b c x^2 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.214474, size = 128, normalized size = 0.67 \[ \frac{1}{6} \sqrt{d-c^2 d x^2} \left (\frac{\left (a+b \sin ^{-1}(c x)\right )^3}{b c \sqrt{1-c^2 x^2}}-\frac{3 b \left (c x \left (2 a c x+b \sqrt{1-c^2 x^2}\right )+b \left (2 c^2 x^2-1\right ) \sin ^{-1}(c x)\right )}{2 c \sqrt{1-c^2 x^2}}+3 x \left (a+b \sin ^{-1}(c x)\right )^2\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(Sqrt[d - c^2*d*x^2]*(3*x*(a + b*ArcSin[c*x])^2 + (a + b*ArcSin[c*x])^3/(b*c*Sqrt[1 - c^2*x^2]) - (3*b*(c*x*(2
*a*c*x + b*Sqrt[1 - c^2*x^2]) + b*(-1 + 2*c^2*x^2)*ArcSin[c*x]))/(2*c*Sqrt[1 - c^2*x^2])))/6

________________________________________________________________________________________

Maple [B]  time = 0.169, size = 564, normalized size = 2.9 \begin{align*}{\frac{x{a}^{2}}{2}\sqrt{-{c}^{2}d{x}^{2}+d}}+{\frac{{a}^{2}d}{2}\arctan \left ({x\sqrt{{c}^{2}d}{\frac{1}{\sqrt{-{c}^{2}d{x}^{2}+d}}}} \right ){\frac{1}{\sqrt{{c}^{2}d}}}}-{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{3}}{6\,c \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{{b}^{2}{c}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}{x}^{3}}{2\,{c}^{2}{x}^{2}-2}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2} \left ( \arcsin \left ( cx \right ) \right ) ^{2}x}{2\,{c}^{2}{x}^{2}-2}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2}{c}^{2}{x}^{3}}{4\,{c}^{2}{x}^{2}-4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{{b}^{2}x}{4\,{c}^{2}{x}^{2}-4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{{b}^{2}\arcsin \left ( cx \right ) }{4\,c \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{{b}^{2}c\arcsin \left ( cx \right ){x}^{2}}{2\,{c}^{2}{x}^{2}-2}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{ab \left ( \arcsin \left ( cx \right ) \right ) ^{2}}{2\,c \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{ab{c}^{2}\arcsin \left ( cx \right ){x}^{3}}{{c}^{2}{x}^{2}-1}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{abc{x}^{2}}{2\,{c}^{2}{x}^{2}-2}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{ab\arcsin \left ( cx \right ) x}{{c}^{2}{x}^{2}-1}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{ab}{4\,c \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x)

[Out]

1/2*x*(-c^2*d*x^2+d)^(1/2)*a^2+1/2*a^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/6*b^2*(-
d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^3+1/2*b^2*(-d*(c^2*x^2-1))^(1/2)*c^2/(c^2*x^
2-1)*arcsin(c*x)^2*x^3-1/2*b^2*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*arcsin(c*x)^2*x-1/4*b^2*(-d*(c^2*x^2-1))^(1/
2)*c^2/(c^2*x^2-1)*x^3+1/4*b^2*(-d*(c^2*x^2-1))^(1/2)/(c^2*x^2-1)*x-1/4*b^2*(-d*(c^2*x^2-1))^(1/2)/c/(c^2*x^2-
1)*arcsin(c*x)*(-c^2*x^2+1)^(1/2)+1/2*b^2*(-d*(c^2*x^2-1))^(1/2)*c/(c^2*x^2-1)*arcsin(c*x)*(-c^2*x^2+1)^(1/2)*
x^2-1/2*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^2+a*b*(-d*(c^2*x^2-1))^(1/2)*c
^2/(c^2*x^2-1)*arcsin(c*x)*x^3+1/2*a*b*(-d*(c^2*x^2-1))^(1/2)*c/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x^2-a*b*(-d*(c^
2*x^2-1))^(1/2)/(c^2*x^2-1)*arcsin(c*x)*x-1/4*a*b*(-d*(c^2*x^2-1))^(1/2)/c/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{-c^{2} d x^{2} + d}{\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-c^{2} d x^{2} + d}{\left (b \arcsin \left (c x\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a)^2, x)